An automated high-throughput system for phenotypic screening of chemical libraries on C. elegans and parasitic nematodes

نویسندگان

  • Frederick A. Partridge
  • Anwen E. Brown
  • Steven D. Buckingham
  • Nicky J. Willis
  • Graham M. Wynne
  • Ruth Forman
  • Kathryn J. Else
  • Alison A. Morrison
  • Jacqueline B. Matthews
  • Angela J. Russell
  • David A. Lomas
  • David B. Sattelle
چکیده

Parasitic nematodes infect hundreds of millions of people and farmed livestock. Further, plant parasitic nematodes result in major crop damage. The pipeline of therapeutic compounds is limited and parasite resistance to the existing anthelmintic compounds is a global threat. We have developed an INVertebrate Automated Phenotyping Platform (INVAPP) for high-throughput, plate-based chemical screening, and an algorithm (Paragon) which allows screening for compounds that have an effect on motility and development of parasitic worms. We have validated its utility by determining the efficacy of a panel of known anthelmintics against model and parasitic nematodes: Caenorhabditis elegans, Haemonchus contortus, Teladorsagia circumcincta, and Trichuris muris. We then applied the system to screen the Pathogen Box chemical library in a blinded fashion and identified compounds already known to have anthelmintic or anti-parasitic activity, including tolfenpyrad, auranofin, and mebendazole; and 14 compounds previously undescribed as anthelmintics, including benzoxaborole and isoxazole chemotypes. This system offers an effective, high-throughput system for the discovery of novel anthelmintics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ultra High-Throughput, Whole-Animal Screen for Small Molecule Modulators of a Specific Genetic Pathway in Caenorhabditis elegans

High-throughput screening (HTS) is a powerful approach to drug discovery, but many lead compounds are found to be unsuitable for use in vivo after initial screening. Screening in small animals like C. elegans can help avoid these problems, but this system has been limited to screens with low-throughput or no specific molecular target. We report the first in vivo 1536-well plate assay for a spec...

متن کامل

Using C. elegans Forward and Reverse Genetics to Identify New Compounds with Anthelmintic Activity

BACKGROUND The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by d...

متن کامل

Caenorhabditis elegans MPP+ model of Parkinson's disease for high-throughput drug screenings.

The neurotoxin MPTP and its active metabolite MPP+ cause Parkinson's disease (PD)-like symptoms in vertebrates by selectively destroying dopaminergic neurons in the substantia nigra. MPTP/MPP+ models have been established in rodents to screen for pharmacologically active compounds. In addition to being costly and time consuming, these animal models are not suitable for large scale testings usin...

متن کامل

Automated, high-throughput, motility analysis in Caenorhabditiselegans and parasitic nematodes: Applications in the search for new anthelmintics

The scale of the damage worldwide to human health, animal health and agricultural crops resulting from parasitic nematodes, together with the paucity of treatments and the threat of developing resistance to the limited set of widely-deployed chemical tools, underlines the urgent need to develop novel drugs and chemicals to control nematode parasites. Robust chemical screens which can be automat...

متن کامل

NeuroChip: A Microfluidic Electrophysiological Device for Genetic and Chemical Biology Screening of Caenorhabditis elegans Adult and Larvae

Genetic and chemical biology screens of C. elegans have been of enormous benefit in providing fundamental insight into neural function and neuroactive drugs. Recently the exploitation of microfluidic devices has added greater power to this experimental approach providing more discrete and higher throughput phenotypic analysis of neural systems. Here we make a significant addition to this repert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018